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ACl 318-19: What’s New for 2019

Including size-effect factor
» Higher Rebar Grades ) ),
« Updated Development Lengths=mmey,

« New Effective Stiffness for Deflection
Calculations

« Seismic Design Details — Shear Walls
« Some Updates to Strut & Tie Method
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Shear equation changes for one-
way and two-way shear

e Size Effect
e Low Flexural Reinforcement Ratio
 Axial load (prestress)

e Results gathered and vetted by AClI Comm. 445



Why one-way shear equations changed
in 318-19
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Why one-way shear equations changed
in 318-19
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Why one-way shear equations changed

in 318-19
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One-way shear provision:
Modified goals

* Include nonprestressed and-prestressed

* Include size effect and axial loading

* Include effect of (p,,)

* Continue to use 2Vf,

* Reduce multiple empirical equations
* Easy to use



ACl 318-19 New one-way shear equations
Table 22.5.5.1 - V_tfor nonprestressed
members

Criteria \Y

C

[ZAF+— b,,d (a)

AVZAv,min E:cther

| [SA(pw)l/%/ +— byd | (b)
Av<Av,min [8A }t(pw)l/g'v +_ b d (C)
Notes:

1. Axial load, N, is positive for compression and negative for tension
2. V_shall not be taken less than zero.




Effect of p,,

ACI 318-19 Shear Equation

L0
~N

N

LN i

(2.41bs / up

5
0

Longitudinal Reinforcement Ratio (As/bd)



Size Effect: Value for A ?
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Beam discussion

- Where A, ,,;,, installed and N, = 0, V_= (2f )b, d,
— ACI 318-14 ~ ACI 318-19

* Provisions encourage use of A, min




9.6.3.1 - Minimum shear
reinforcement

* ACI 318-14
* A, ..., requiredif V,>0.5 ¢V,

v,min

* ACl 318-19
* A, required if V, > dANf b, d

v,min



Example: Foundation Shear Check

« =121t

« h=30in. )

o« d~25.51in. _—24in.x24n,

° f’c = 4000 psi Isolation—\ f6in. basement slab
+ 13-No. 8 bars ' e |
e b=12ft AN B L
« A,=0in.2 - Ext -

. As - 10.27 in.z Fig. El.1—Rectangular foundation plan.

» Analysis V= 231 kip



Example: Foundation Shear Check

- ACI 318-14

BV = $22: £ bd
AV = (0.75)(2)(1)/4000 psi (144in.)(25.5in.)
@V =348 kip > 231 kip .. OK




Example: Foundation Shear Check

« ACI 318-19
‘ Av S Av,min
 Per ACI 318-19 (13.2.6.2), neglect size effect

for:

— One-way shallow foundations

— Two-way isolated footings

— Two-way combined and mat foundations

V. = g84(p,) S bd



Example: Foundation Shear Check
.+ ACI 318-19

oV, = g8i(p,) [ £ bd
1027 in?
(144 in.)(25.5 in.)
V. = (0.75)(8)(1)(0.0028)’> \/4000 psi (144in.)(25.5in.)
&V, =196 kip < 231 kip . NG

p. =0.0028




Example: Foundation Shear Check

« ACI318-19
« Add 6 in. thickness

oV, = §8i(p,) [ £ bd
1027 in”?
(144 in)(31.5 in.)
V. = (0.75)(8)(1)(0.0023)% J4000 psi(144 in.)(31.5 in.)
@V =226 kip > 191 kip .. OK

=0.0023

P




Why two-way shear provisions changed in
318-19

* First Equation developed in 1963 for slabs with
t<5in.and p> 1%

* Two issues similar to one-way shear
* Size effect

* Llowp
VC

47»\/7; (a)
| . 242 W7 (b)
i . i‘/ bo Least of (a), (b), ﬂ ‘
______ and (c):

(2 +ab—sal)7‘ A

V.=v(b,d) o




Two-way shear: size effect

* Table 22.6.5.2—v,_ for two-way members without
shear reinforcement

v

Least of (a), (b),
and (c):

C
AL

(a)

(z+%)xsxﬁ

[2+ Jmﬁ;

o.d
bO

(c)




Two-way shear: Effect of low p

* Only vert. load, cracking ~2+/ f¢; punching 4./ f .
* Aggregate interlock contributes to shear strength

* Low p => local bar yielding, crack width increase,
allows sliding along shear crack

* Punching loads < 4,/ f .




New two-way slab reinforcement limits

* Need A, ,;,,2 0.0018A,

* If on the critical section v > @2A 7»«/

* Then
Sv. b, .b

uv ~slab

As,mm —
¢aS fy




Table 8.4.2.2.3

Definition of b

slab

\ 4

A

A 4

1.5h I 1.5h

A

\ 4

bslab

Slab Edge

1.5h

\ 4

A

I:)slab

\ 4
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Development Length

* Straight Deformed Bars and Deformed Wires in
Tension

e Simple modification to 318-14
 Accounts for Grade 80 and 100

e Standard Hooks and Headed Deformed Bars
e Substantial changes from 318-14



Straight Development Length of
Deformed Bars in Tension
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Figure 1: ACI 318-14 Equation 25.4.2 3a (Unconfined Test Resulis)

fiest = reinforcement stress at the time of failure
feqie = Calculated stress: ACI 318-14



Straight Development Length of
Deformed Bars in Tension

Table 25.4.2.3—Development length for deformed
bars and deformed wires in tension

* Modification in — A
Sl m p | |f| ed bars and deformed No. 7 and

. . Spacing and cover wires larger bars
provisions of Table — -

Clear spacing of bars or wires

2 5 . 4 . 2 . 3 being developed or lap spliced
not less than d,. clear cover
° LIJ g ‘' hew at least d. and stirrups or ties
.« e . throughout £, not less than the
modification factor Code minimum [%}, {firiw]db
based on grade Of Clear 5pax:ing?arfbar5 Of Wires # r
e | N fO rcement: being developed or lap spliced

at least 2dp and clear cover at

* Grade 80, 1.15 least d

e Grade 100, 1.30 Other cases [W@]d, [f_lﬂ-]

50hf 7/ 4001




Straight Development Length of
Deformed Bars in Tension

* Modification in general development length

equation 25.4.2.4(a) Modification factors
A : Lightweight
P 3 fy Yehsy p v, : Casting position
a— b . Epox
40 1 (Cp + K Ve POXY
A\/ﬁ( d, tr) v, : Size
v, : Reinforcement grade

* Provision 25.4.2.2

K., 2 0.5d, for f, 2 80,000 psi, if longitudinal bar
spacing < 6in.
I 404,

tr

SN



Development Length

e Standard Hooks in Tension




Development Length of Std.
Hooks in Tension

e Failure Modes

* Mostly, front and side failures
* Dominant front failure (pullout and blowout)
* Blowouts were more sudden in nature



Development Length of Standard
Hooks in Tension
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f,, = stress at anchorage failure for the hooked bar
f, aci = stress predicted by the ACI development length equation

S



Development Length of Standard

Hooks in Tension

- 25.4.3.1—Development length of standard hooks in
tension is the greater of (a) through (c):

(a) (fytpewrwowc) 15 ACI 318- 14

55/1\/E b 0., = (fyl/)ellJcllJr>
b) 8&d, 501/,
(c) 61n

- Modification factors
Y, . Confining reinforcement (redefined)
Y, . Location (new)
Y. . Concrete strength (new)



Development Length of Standard Hooks
In Tension

Table 25.4.3.2: Modification factors for development of hooked bars in
tension

Modification Condition Value of
factor factor
For 90-degree hooks of No. 11 and smaller 0.8
318-14 bars
Confining (1) enclosed along ¢, within ties or stirrups
reinforcement, perpendicular to £, at s <3d,, or
v, (2) enclosed along the bar extension

beyond hook including the bend within ties
or stirrups perpendicular to £, at s < 3d,

Other 1.0

318-19 For No.11 and smaller bars with 1.0
Confining | Ay >0.4A,, ors>6d,

reinforcement, Other 16

Ve




Development Length of Standard
Hooks in Tension

* (1) Confining reinforcement |
placed parallel to the bar - fa T

(Typical in beam-column joint) - _

* Two or more ties or stirrups ) I L ————
parallel to £, enclosing the ]
hooks 15d,

e Evenly distributed with a
center-to-center spacing <

5d, =
Ciy . . Ties or stirrups
* within 15d, of the centerline
of the straight portion of the Fig. R25.4.3.3a

hooked bars



Development Length of Standard
Hooks in Tension

* (2) Confining reinforcement
placed perpendicular to the
bar

* Two or more ties or stirrups
perpendicular to €4, enclosing
the hooks

e Evenly distributed with a

center-to-center spacing < 8db e N\ Ties or stirups
= Bdb

Fig. R25.4.3.3b



Development Length of Std. Hooks in

_E%QG%QRQ Modification factors for development of hooked bars in

tension

Modification Condition Value of
factor factor
For No. 11 bar and smaller hooks with side 0.7
318-14 cover (normal to plane of hook) > 2-1/2 in.
Cover and for 90-degree hook with cover on bar
V. extension beyond hook > 2 in.
Other 1.0
318-19 For No.11 and smaller diameter hooked bars 1.0

Location, y, | (1) Terminating inside column core w/ side
cover normal to plane of hook > 2.5 in., or

(2) with side cover normal to plane of hook >
6d,

Other 1.25




Development Length of Std. Hooks in
Tension

Modification Condition Value of factor
factor

Concrete For f’. < 6000 psi |f'./15,000 +0.6

sfrength, v, For f'. = 6000 psi 1.0
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Concerns about deflection
calculations

* Service level deflections based on Branson’s
equation underpredicted deflections for p below =

0.8% 3 3
1, = (Zer) + |1 - Mer)
e — Ma g Ma cr
* Reports of excessive slab deflections (Kopczynski,
Stivaros)

* High-strength reinforcement may result in lower
reinforcement ratios



ECICI'

ECICF

EJy Edy Edy Edo Ed,

WM

[, should be the average of flexibilities



Comparison of Branson’s and
Bischoft’s [,

* Branson

e Bischoff

WA
1 _ (Mcr)z 1 + (1 (Mcr)z) 1 < 1
I M, Ig M, Ier Ig

Branson combines stiffnesses. Bischoff combines flexibilities.




Lightly reinforced

Midspan moment

Experimental

— Branson’s Eq.
—— Bischoff’s Eq.

Midspan deflection



Effective Moment of Inertia

e Table 24.2.3.5 ~ Inverse of Bischoff Eqn.

Mg > (2/3)Mcp, I, = Lor
() ()

M, < (2/3)Mcp, I, = I
e 2/3 factor added to account for:

* restraint that reduces effective cracking moment

* reduced concrete tensile strength during construction

* Prestressed concrete maintains use of Branson’s Eq.
and 1.0 M,
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18.10.2.4—Longitudinal

reinforcement ratio at ends of walls
h, /€, 2.0

e Failures in Chile and New
Zealand

* 1 or 2 large cracks
* Minor secondary cracks

(a)f’.; 41] I'u'IF'a [:hj_,f".; 5III MPa (u:)f’.; ﬁIII I'u'IPa
(5380 nsh (7250 st (8700 fs)



18.10.2.4—Longitudinal
reinforcement ratio at ends of walls

New edge reinforcement ratio

e Well distributed cracks

* Flexure yielding over longer
length

E|E!HE|EEIE|ME!|!EIE! 5 :iéihlimﬂlmillm!! 5 1 B BB
{(a) /. =40 MPa (b) /- =50 MPa (¢) /. = 60 MPa
{3583 psi1) {7250 ps1) (8700 ps1)

P = 0.64% 2 =0.71% pe=0.78%



18.10.2.4—Longitudinal
reinforcement ratio at ends of walls

_ f'
| - w - - ,_l
0.15¢ 0.15¢ ';1{].153' ! !
I} y !1 g I I+ N [
[ |
‘P\;n eﬂ 0.154'
158

||
0.150'w

A5¢,,

o o s o




18.10.6.4(f)—Special Boundary

Elements

Longitudinal bars
supported by a seismic

Hoop Drve.trlap hook or corner of a hoop
Supplemental crossties ?'Ieaﬂndménl;g

Hoop #1 _f ( IE' 4 - r Hoop #2 Longitudinal web reinforcement
| /

e /] ]

bl b, |® J// =
1 |e (Y r \
Horizontal web \~ Through web
ty< 2by reinforcement, A, crosstie
- e -

(b) Overlapping hoops with supplemental 135-degree crossties and 135-degree crossties
supporting distributed web longitudinal reinforcement

b>,/0.025¢ ¢
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23.10 Curved-bar Nodes

T

Dapped-end T-beam

Nodal zones are

generally too small to =

allow development




23.10 Curved-bar Nodes

T
Two issues that need to (’T
be addressed: Q‘Q\
1. Slipping of bar j_\

2. Concrete crushing



23.10 Curved-bar Nodes

C-T-T
6 <180 degreebend | = _
N
Al
N
2Atsf b \ C
r, > E4 Y= = -
beC ] I
]
but not less than half bend T C

diameter of Table 25.3



23.10 Curved-bar Nodes

23.10.6 The curved bar must
have sufficient to develop
difference in force

{.» (measured along centerline of bar)

Ablfvtanﬂc

R Radial compressive
stress

e,>€,(1-tan 6 )

Circumferential
bond stress

In terms of r,,

C, Resultant of radial and
circumferential stresses

C. = Atsfv

. 2/,(1-tan@,) d, Tt
T 2

)
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