ترسی خمت مفوفرای با یا درجه آزادی در دفیقات معلی (امتدا) ماترس خی مضو خرای با یک درجه آزادی در حضات سعلی (امدی) ماترس مبدل یا ماتریس انتقال (R) مخت استفال (R) مخت استفال (R) مخت استفال (R) مخت استفال (R) المحت الم $$P_{c} = R P_{G}$$ $$\delta_{L} = R \delta_{G}$$ * بارساخگ، می توان ۱۹۵۵ د ۱۹۵۱ را با حریف ۲ و ۲ ستان داد. بابرایی سازیسی میل عضو حرایی ران توان مازس درران (Ratetion) ب كال زير رندت: $$R = \begin{bmatrix} R_{\overline{J}} & 0 \\ 0 & R_{\overline{J}} \end{bmatrix} \qquad R_{\overline{J}} = \begin{bmatrix} C & S \\ -S & C \end{bmatrix}$$ * ماريس مبل داراي فاست تعامراس. $$RR^{T} = R^{T}R = I$$ $$R^{-1} = R^{T}$$ $$|A^{-1} = I| \qquad |A = b \rightarrow x = A^{-1}b$$ $$R = \begin{bmatrix} R_{J} & 0 \\ 0 & R_{J} \end{bmatrix} \qquad R_{J} = \begin{bmatrix} C & S \\ -S & C \end{bmatrix}$$ $$P_{G} = R^{T} P_{L}$$ $$\delta_{G} = R^{T} \delta_{L}$$ ## مارس خت مفودر مفقت کلی (اوه اه) برای نشلیل ماترس منی کل سازه لازم است که مازیس سخت للیه اعضا دریک دنگاه مفق ت مشترک لوئة شود ما اسكان تركيب الما وجود دائت باشد. م مبارت دیگر ما تبدیل ما زمین سنت اعضا از مختصات معل (losal) به مضقات کل (Global) ، امکان ترکیب ما زیس من اعضا و تکیل ما زیس من کل سازه مراسم می مود . $$P_{L} = k_{L} \delta_{L} \longrightarrow R^{T} P_{L} = R^{T} k_{L} R \delta_{C} \longrightarrow P_{G} = R^{T} k_{L} R \delta_{G}$$ $$* k_{G} = R^{T} k_{L} R *$$ ماريس كتى عصوريان (رمحقت كي (المعاما)) ## مارتی کتی عضو حزایی (رمنحقت کی (المطاما) $$K_{C} = \begin{bmatrix} C & -S & 0 & 0 \\ S & C & 0 & 0 \\ 0 & 0 & C & -S \\ 0 & 0 & S & C \end{bmatrix} \underbrace{E_{A}}_{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & S \end{bmatrix} \begin{bmatrix} C & S & 0 & 0 \\ -S & C & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C \end{bmatrix}$$ $$K_{C} = \begin{bmatrix} C & -S & \circ & \circ \\ S & C & \circ & \circ \\ \bullet & \circ & C & -S \\ \bullet & \circ & S & C \end{bmatrix} \xrightarrow{EA} \begin{bmatrix} C & S & -C & -S \\ \bullet & \bullet & \circ & \circ \\ -C & -S & C & S \\ \bullet & \bullet & \bullet & \circ \end{bmatrix} = \xrightarrow{EA} \begin{bmatrix} C^{2} & CS & -C^{2} & -CS \\ CS & S^{2} & -CS & -S^{2} \\ -C^{2} & -CS & -S^{2} & CS \\ -CS & -S^{2} & -CS & -S^{2} \end{bmatrix}$$ $$k_{G} = \begin{bmatrix} \frac{-k_{J}}{k_{J}} & \frac{-k_{J}}{k_{J}} \end{bmatrix} \qquad k_{J} = \frac{EA}{C} \begin{bmatrix} c_{J} & c_{J} \\ c_{J} & c_{J} \end{bmatrix}$$